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ABSTRACT: Scanning tunneling microscopy (STM) with a
functionalized tip apex reveals the geometric and electronic
structures of a sample within the same experiment. However,
the complex nature of the signal makes images difficult to
interpret and has so far limited most research to planar samples
with a known chemical composition. Here, we present
automated structure discovery for STM (ASD-STM), a machine
learning tool for predicting the atomic structure directly from
an STM image, by building upon successful methods for
structure discovery in noncontact atomic force microscopy (nc-
AFM). We apply the method on various organic molecules and
achieve good accuracy on structure predictions and chemical
identification on a qualitative level while highlighting future development requirements for ASD-STM. This method is directly
applicable to experimental STM images of organic molecules, making structure discovery available for a wider scanning probe
microscopy audience outside of nc-AFM. This work also allows more advanced machine learning methods to be developed for
STM structure discovery.
KEYWORDS: scanning probe microscopy, scanning tunneling microscopy, tip functionalization, machine learning,
convolutional neural network, structure discovery

Scanning probe microscopy (SPM) methods are powerful
tools for studying nanoscale systems with atomic resolution. As
the basis of SPM methods, scanning tunneling microscopy
(STM)1 and atomic force microscopy (AFM)2 have been
widely utilized in the characterization of various systems, such
as biological samples, hybrid inorganic−organic interfaces, and
individual steps of on-surface reactions.3−9 To enhance the
spatial accuracy in the characterization, the probe tip can be
functionalized using a chemically inert, flexible apex (often a
CO molecule) to allow scanning at a very close tip-sample
distance where Pauli repulsion is the dominating interac-
tion.10,11 With respect to the detailed characterization of
atomic structures, there exist many demonstrations of the
improved spatial resolution of AFM scanning with function-
alized tips,9,12,13 but STM is now also being increasingly used
in this bond-resolved mode.8,13−18 STM in particular benefits
significantly from tip functionalization as sharp submolecular
features appear in the image, revealing both the molecular
skeleton and the electronic structure in high detail within the
same experiment�this is impossible using a bare metal tip19 or
by high-resolution AFM. In addition to atomic structural
characterization, STM with a functionalized tip offers
interesting approaches for electronic structure characterization
via Frontier orbitals of the tip apex20 by improving the visibility

of molecular orbitals21 and by distinguishing nearby molecular
states.17

In terms of structure characterization, the main limitations of
STM are its inability to see beyond the closest atom to the tip
and the insurmountable problem of chemical identification of
the atoms. In fact, research using bond-resolved STM has so
far been mostly limited to planar molecules consisting of only a
priori known atomic species, and the recognition of an
unknown sample can require an extensive search through all
possible molecules and configurations. The same problems
have been experienced in the field of noncontact AFM where
recent advances in machine learning image analysis have been
proven effective in structure discovery and chemical identi-
fication of single molecules and ice structures.22−27 Beyond
machine learning, some of the challenges with respect to
chemical identification can be overcome by combining tip-
enhanced Raman spectroscopy with STM and AFM to achieve
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Figure 1. Scheme of ASD-STM. (A) Starting from a large set of organic molecules, (B−E) we simulate STM and AFM for different rotations
of the molecules and calculate corresponding physical descriptors. (F) The images are stored in a database and (G) used as training material
for a machine learning model for STM structure discovery.

Figure 2. Example predictions of simulated STM images of (A−D) C18H13NO2, (E−H) C8H6ClNO3, (I−L) C13H12O3S, and (M−P)
C12H9NO2S molecules from the testing set. Each molecule has a column for the geometry (descriptor depth cutoff shown in the side profile),
STM image, predicted structure, and reference. Scale bar is 2 Å.
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quantitative chemical sensitivity.28 For STM, advanced image
analysis methods have so far not been developed for bond-
resolved imaging but instead the focus has been on, e.g., defect
detection,29 molecule keypoint detection,30 surface character-
ization,31 and atom manipulation32 as well as autonomous
experiments.33 Machine learning methods have also been used
for automating the tip conditioning34 and tip functionaliza-
tion35 in STM. It is clear that the focus in general has been on
larger-scale systems and processes, and there is a need for
automated characterization methods for bond-resolved imag-
ing with a CO tip.
In this work, we present automated structure discovery for

STM (ASD-STM), a machine learning approach for structure
characterization directly from experimentally bond-resolved
STM images. With ASD-STM, we offer a solution to the
problems in STM structure characterization while bridging the
gap between image analysis methods for high-resolution AFM
and STM. As STM with a functionalized tip is a more easily
accessible characterization method compared to noncontact
AFM,36 this work also makes ASD available for a wider SPM
audience and allows more sophisticated methods to be
developed for sample recognition in STM.

RESULTS
The proposed method starting from a data set of molecule
geometries and ending in a machine learning model that can
predict atomic structure directly from experimental images is
outlined in Figure 1.

Predictions on Simulated Images. To benchmark our
method and assess the improvement in prediction accuracy, we
use the trained model to predict atomic structures from
simulated images not included in the training data. The
obvious benefit from analyzing simulated predictions is that
the atomic coordinates of the reference, and therefore the
image descriptor, are known exactly. Figure 2 shows three
examples of predictions from simulated images. The three
examples have been taken at varying scanning heights and the
sample molecules are different in size and structure, and they
contain different chemical species and functional groups to
demonstrate the versatility of the method.
Molecule 1 (Figure 2A−D) is the largest of the three and it

has two benzene groups and a 5-ring lactone group with an
additional nitrogen heteroatom. The molecule is planar, and all
atoms are visible to the tip resulting in the carbon backbone

skeleton being revealed with the exception of the benzene rings
which are not prominent in the STM image (Figure 2B). Even
though the skeleton is not completely visible, the prediction
(Figure 2C) is very close to that of the reference (Figure 2D).
All atoms, including hydrogens which are not visible to the eye,
are correctly located and the associated chemical identification
distinguishes hydrogen atoms from carbon, nitrogen, and
oxygen atoms. It is also promising that the model correctly
identifies the oxygen bonded to the 5-ring as not hydrogen and
that it does not blindly add hydrogen atoms to nitrogen and
oxygen atoms of the 5-ring. Overall, the mean absolute error
relative to the range of values in the reference is 1.1%.
The second example shows a smaller molecule containing a

nitro group and a chlorine atom (Figure 2E−H). The molecule
is slightly tilted, and it includes a nonplanar part in which the
branch containing a carbonyl group is bending downward. This
is projected in the reference descriptor by a barely visible
carbon and two of the bonded hydrogen atoms are too deep to
be considered (Figure 2H). Again, the prediction resembles
the reference very closely (Figure 2G). The chlorine atom is
distinguished from hydrogen atoms, and the relative height of
the oxygen in the carbonyl group is correctly identified. The
location of the rightmost carbon atom is predicted correctly in
the scanning plane, but the disk is too bright, meaning that the
vertical position prediction is wrong. Since the oxygen atom is
approximately 1.0 Å higher than the deepest carbon atom, the
disk representing it is very bright in comparison and it appears
to shadow the nearby deep carbon atom, meaning that it is not
surprising that the model struggles most in this region. The
relative error is 0.4%.
The third simulated example contains a sulfur atom, a

hydroxy group, and two carbon 6-rings, one of which has two
carbonyl groups (Figure 2I−L). In the STM image, the sulfur
atom appears as the brightest area (Figure 2J). This molecule
is particularly tricky for chemical identification due to the
carbonyl groups which could theoretically be hydrogen atoms
of a benzene ring, and the sulfur atom bridging the two carbon
structures could be, e.g., an oxygen atom forming an ether
group. Regardless of the apparent challenges, the model
predicts all of these properties correctly (Figure 2K). The disks
representing oxygen atoms have a larger radius than the
hydrogen atoms of the lower ring, and the sulfur atom has an
even bigger radius distinguishing it from oxygen and carbon
atoms. The carbon chain originating from the sulfur is not

Figure 3. Predictions from four experimental STM images. (A,D,G,J) The first column of each example is the STM image used as input for
ASD-STM. (B,E,H,K) The predictions are shown in the second column and (C,F,I,L) the third column contains the structural formula. Scale
bar is 4 Å. STM images and structural formulas adapted with permission from ref 18 Ⓒ2020 ACS.
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considered in the descriptor due to the depth threshold.
Finally, all hydrogen atoms included in the reference are
predicted and the tilting of the molecule is captured in the
prediction. The relative error for this example is 0.6%. The
fourth example consists of two 6-rings twisted with respect to
each other, one containing a nitrogen heteroatom and a
carboxyl group (Figure 2M−P). Here, the carbon backbone is
predicted accurately despite the twisting, and the relative error
is 0.7%. To illustrate the accuracy of three-dimensional (3D)
molecules, we show more predictions in Supporting
Information (see Figure S2). Overall, the prediction accuracy
is very good on simulated STM images and the trained model
predicts atomic structures of different sizes, distinguishes
various chemical species, and even appears to predict
seemingly hidden atoms. However, the final validation of the
model has to be done on experimental data, and to this end, we
first consider four benchmark molecules. Also, even though
ASD-STM was trained on constant-height images, extending it
to constant-current images could possibly enable easier 3D
structure recognition. As a preliminary test of feasibility, we
applied the present model to a constant-current image of
benzene, and Figure S3 shows that the prediction is quite
reasonable. Developing this further will certainly be a future
target for the method.

Experimental Validation. The first experimental images
we apply ASD-STM on are STM images obtained by Song et
al.18 that reveal the molecular skeletons of four hydrocarbons
in high detail making them excellent for benchmarking
purposes (Figure 3A,D,G,J). The molecules consist of
exclusively carbon and hydrogen atoms constructing five-
and six-membered rings, barring the fourth example in which a
carbon atom links two ring structures (Figure 3L). In all STM
images, the rings appear quite distorted, and in many cases, it is
not immediately clear how many carbon atoms constitute the

particular ring, and therefore along with general structure
discovery, we consider our objective to be to distinguish these
rings. The first example consists of nine carbon rings of which
seven- are six-membered. Most of the rings, seven out of nine,
are correctly identified in the prediction (Figure 3B),
characterization of one ring is unclear, and characterization
of one ring is misclassified. The model also seems to have
learned how rings of different sizes connect with each other.
Additionally, the prediction suggests that the bottom and top
parts of the molecule are slightly closer to the tip than the
central parts, but these predictions are difficult to validate.
The second example is an STM image of a symmetric

molecule with eight rings (Figure 3D−F). The five rings are
fairly large in the image, and the rings at all ends of the
molecule appear brighter than in the center. The prediction is
very good in terms of the carbon structure with all atoms
predicted correctly (Figure 3E). In this case, even many
hydrogen atoms are included in the prediction. The third
example we consider is smaller than the previous molecules
(Figure 3G−I), and again, the model performs well in
predicting the atomic positions of carbon atoms. In this case,
the bottom row of rings proposes a challenge for the model as
the six rings in the corners are misclassified as five rings. A
possible explanation for the wrong prediction is that the rings
are almost circular and lack characteristic corners. This is
supported by the first example which exhibited similar features
in the STM image and where similar problems were
encountered. It is also worth noting that the STM image
contains considerable noise in the form of horizontal lines, but
the model succeeds in the prediction regardless. We attribute
this to a successful augmentation process during the training
phase, where noise and cut-outs were applied to the initially
pristine simulated images.

Figure 4. Prediction on the experimental image of the (A−C) TOAT (1,5,9-trioxo-13-azatriangulene) and (D−F) phthalocyanine (2H-Pc)
molecules. For both molecules, the columns contain, from left to right, the STM image, structure prediction, and geometry of the molecule.
Location of the pyrrolic hydrogen atoms in (F) as proposed in ref 21. Scale bar is 2 Å. STM images in (A) reprinted with permission from ref
38 Ⓒ2016 ACS and in (D) from ref 21 Ⓒ2023 ACS.
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The final example is different from the others in that it
includes two discrete ring structures that are connected by
carbon atoms (Figure 3J−L). It is clear that the model
struggles with the molecule and does not predict the correct
structure in this case. The rightmost part is mostly correct,
although the model does not seem to fully recognize the rings,
as some of the predicted atoms are blurry and slightly
deformed. The leftmost part of the molecule has more errors,
and only the central five ring is correctly predicted (Figure
3K). A general problem with many machine learning models is
that their explainability is poor and it is often difficult to
explain the reasons behind a certain prediction.37 One possible
reason would be the particular structure of the molecule;
molecules containing two separate but connected carbon ring
structures are rare in the data set, meaning that the model has
not had proper experience and thus fails in the prediction.
Also, it is vital to train the model to withstand noise and other
artifacts present in experimental images, which is illustrated by
comparing to predictions of these structures from pristine
simulated images (see Figure S4). Overall, the predictions
correspond well to the molecular structures, and in total, 106
out of 116 (91.4%) carbon atoms and 23 out of 31 (74.2%)
carbon rings are predicted correctly.
Predictions on the hydrocarbon examples are promising, but

the molecular structures were rather simple, and we want to
test the limits of the model on a more challenging example. To
this end, we use STM images of the TOAT molecule (1,5,9-
trioxo-13-azatriangulene) (Figure 4A)38 and phthalocyanine
(2H-Pc) (Figure 4D).21 Predicting the atomic structure of
TOAT is particularly interesting since the simulation software
we used to generate the training data is known for not being
able to properly reproduce experimental STM images of
TOAT.39 Regardless, the prediction is in very good agreement
with the true molecular structure (Figure 4B). The triangulene
backbone is correctly identified, and all oxygen atoms are
distinguished from hydrogen atoms, indicated by larger disks in
the prediction. In this example, even most hydrogen atoms are
located with the only exception being the top right ring missing
one hydrogen. The disk representing the center nitrogen seems
to have the same radius as the neighboring carbon atoms
suggesting an incorrect prediction, but this classification is
inconclusive. To assist in the chemical identification, we
performed further analysis and trained another model which
separates the disks into different classes by atomic type, which
allowed us to distinguish the nitrogen heteroatom (Figure
S5).22 Definitive chemical identification has been explored
previously for AFM,23,24 but for STM, it remains a future
challenge.
The most challenging example we test here is an STM image

of 2H-Pc (Figure 4D), and this prediction (Figure 4E) reveals
the limitations of our approach. 2H-Pc is a cyclic molecule
consisting of four isoindole units connected by nitrogen atoms
(Figure 4F). In this example, a perfect prediction would reveal
the configuration of the hydrogen atoms in the central moiety.
In the STM image, the inner five rings are bright and clearly
exhibit the pentagon-like motif, whereas the outer six rings are
less pronounced. The nitrogen atoms connecting the units
appear as cones decaying toward the center. In general, the
molecular skeleton is not very prominent in the image, and the
signal originating from the electronic structure intersects
significantly with the mechanical bending of the tip apex. It
is apparent that these factors severely affect the ability of ASD-
STM to make accurate predictions of the structure. In the

prediction, the five rings apart from the top left ring are
correctly identified, and all nitrogen atoms connecting the rings
are located. The biggest errors are the missing halves of the six
rings and also the central hydrogens that are not included in
the prediction. It is worth noting that a similar phenomenon
was observed in the case of the fourth hydrocarbon (Figure
3K) where the top half of a ring was missing in the prediction.

DISCUSSION
While predictions on most experimental examples were good,
it is clear that there is room for improvement. Since the quality
of data included in the training process is vital to the accuracy
of predictions, rare structures affecting the accuracy should be
discussed, as it raises the important question of how to select
the molecules in the data set. In the scope of SPM structure
discovery, there are two main approaches to data set
generation. The first option, which this work highlights, is to
create a large, diverse, and descriptive molecular data set of
various chemical species and structures and to train a versatile
model with the aim of predicting the structure of almost any
small organic molecule. This approach has also been chosen in
most previous sample characterization efforts (e.g.,22,40), but
recently, another method has been used in ice structure
discovery,26,41 where instead of a diverse data set, a tailored
data set is utilized and perfected to make very accurate
predictions possible in a constrained problem domain. That is,
if the goal was to predict only the geometries of different
hydrocarbons or triangulene-based molecules, the model
would benefit from a tailored data set with a heavy emphasis
on such structures. As methods for quick generation of
molecular structures to create vast molecular data sets are
becoming more readily available,42−44 the balance and cost-
effectiveness of tailored versus diverse data sets should be the
focus of future research.
Second, ASD-STM has been trained on synthetic STM

images of molecules in isolation without the substrate due to
much cheaper computational cost, and as such, the generated
image data set should not be inferred as a source for accurate
electronic structures of adsorbed organic molecules. Moreover,
as we know that PPSTM cannot accurately reproduce STM
images of the TOAT molecule, it was expected that ASD-STM
would struggle with the experimental STM image of TOAT.
However, the accuracy in the prediction was excellent, which
suggests that even though images in the training set are not
entirely representative of true images in terms of electronic
structure, they capture the characteristic sharp lines coming
from CO tip bending accurately, and this seems to be critical
for structure discovery. Still, we do note that for systems
experiencing significant charge transfer or orbital hybridization
ASD-STM is most likely not a sufficient tool, and a more
comprehensive approach is needed.41 Also, synthetic AFM
images of isolated molecules in general correspond well to
experimental AFM images where the substrate is naturally
present, and since for some samples it is possible to
simultaneously gather STM and AFM signals, the possibility
of incorporating AFM data into the training process should be
explored.
Third, we note that the appearance of the molecule in STM

is sensitive to Frontier orbitals of the CO tip and consequently
to the tip height as at closer tip-sample distances the tip
exhibits a strong p-wave character which diminishes to a more
s-wave character at longer distances.21 The s-wave character is
also increased at higher absolute bias voltages.45 In this work,
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ASD-STM has been trained using a constant ratio of s and p-
wave contributions, but the different orbital ratios should be
accounted for if ASD-STM is used for a larger range of tip-
sample distances or bias voltages. Finally, although it is
inevitable that the accuracy of predictions on experimental
images is worse than on simulated images, we will investigate
this further in the future with a particular focus on improving
the robustness of the model against experimental noise and
artifacts.

CONCLUSIONS
This work presents ASD-STM, a method for predicting the
atomic structure of a sample molecule directly from a bond-
resolved STM image. We present the workflow and the
software required to generate an STM image data set and to
train the ML model. Images included in the training set were
synthesized by considering the molecules in isolation, and even
though the electronic structure can be affected by the
substrate, we showed that the approximation of molecules in
isolation is reasonable for structure discovery on bond-resolved
STM. The model was validated by applying it to experimental
images of six different organic molecules, and on most samples,
the accuracy was good in terms of atomic structure;
additionally, we achieved a qualitative level of chemical
identification by distinguishing between hydrogen, carbon,
and oxygen atoms. While the chemical domain of the model is
quite large within the class of organic molecules, many types of
molecules such as organometallic compounds are not within
the scope and would require expanding the training set. On the
other hand, the example of 2H-Pc clearly demonstrated some
of the challenges. The main limitation of the method is the
reliance on the sharp submolecular features in the images,
which restricts the method to high-quality images and to a
range of short tip-sample distances. While the simulated
images are augmented with noise and cut-outs during training,
we anticipate that these augmentations are not the only
difference between simulated and experimental images, and
advanced augmentation strategies should be explored to make
the model more robust against experimental conditions. Also,
we discussed possible further improvements to ASD-STM by
varying the orbital contributions in the tunneling calculation,
by tailoring the composition of the initial data set of molecules
to the problem at hand, and by including simultaneously
gathered AFM data in the training process.
Despite the challenges, ASD-STM is readily applicable to

STM images of various small organic molecules, and with this
work, we allow more sophisticated methods to be developed
for STM structure discovery. Finally, as bond-resolved STM
images exhibit similar submolecular features as noncontact
AFM images at a significantly reduced acquisition time, ASD-
STM demonstrates a promising start for accelerating molecular
structure discovery in SPM in general.

METHODS
Simulated STM Images. The initial data set contains the

optimized geometries and atomic point charges of approximately
81,000 small organic molecules with chemical species lighter than
bromine (Z ≤ 35) with most emphasis on hydrogen, carbon, nitrogen,
and oxygen atoms (Figure 1A).25 Simulating STM images requires
that we first obtain the densities of states of all molecules in the data
set, and since the molecular structures are already optimized, a single-
point calculation is performed for all molecules. All ab initio
calculations are performed using the FHI-aims code46,47 with the

PBE functional48 considering only the Γ k-point. The unit cell is
constructed by padding the molecule with 7 Å of empty space on each
side to ensure that the periodic images do not interact with and affect
the electronic structure.

The STM simulations for all molecules are done using the PPSTM
code.39 PPSTM is based on the Bardeen tunneling theory,49 and it
simulates constant height raster scanning by calculating the tunneling
current at each point of a 3D grid of tip positions allowing for a quick
simulation of multiple constant height scans at different tip-sample
distances (Figure 1C,E). In PPSTM, the tunneling current is
composed of contributions from the individual states of the tip and
the sample. The sample states are obtained from density functional
theory calculations as mentioned, and they are represented by
Lorentzian distributions with a 0.1 eV broadening. The tip orbitals are
considered as s and p orbitals located at the tip apex, and they provide
independent tunneling channels. The tunneling channels are given a
weight between 0 and 1, and the correct weights for a certain tip apex
are found by matching with experiments (e.g., approximately 10% s
and 90% p orbitals for CO tip8,50). Parallel to the STM simulations,
we run the PPAFM51,52 code to calculate the relaxation of the CO
molecule near the sample, and the relaxed positions are, in turn, used
in the STM simulation to achieve a good resemblance to experimental
images revealing the molecular skeleton. PPAFM calculates the CO
relaxation by considering the CO molecule as a probe particle (PP)
and using a mechanical model taking into account the Lennard-Jones
and electrostatic potentials between the PP and the sample. The
position of the PP approaching the sample is relaxed by minimizing
the total force acting upon the PP, and while calculating the relaxed
tip positions, we simultaneously obtain AFM images of the molecules
with little additional cost by integrating the forces affecting the PP
over its path.53 The AFM images are included in the data set of
synthetic images, and they could be used as additional signal in a
method developed for simultaneous AFM/STM imaging.

To maximize the amount of information in the SPM images, we
emphasized flat regions normal to the scanning direction and also
ensured a more even distribution of elements in the resulting images.
To this end, we subjected the molecules to a set of rotations
calculated separately for each molecule (Figure 1B). The rotations
were obtained by computing the convex hull of the atomic
coordinates, which defines planar segments of the molecule, and the
rotations were weighted to include an even distribution of elements
within 0.7 Å of the plane. After applying the rotations, our data set
consists of synthetic SPM images of approximately 48,000 unique
molecules and 235,000 unique images (Figure 1F). This procedure
and the full composition of the data set are described in full detail in a
previous study by Oinonen et al.25

One example item from the generated data set is shown in Figure
1D,E. All items in the data set include a stack of 10 constant height
STM and AFM images taken at 0.1 Å separation over a range of tip-
sample distances starting from a close distance scan where the
molecular skeleton is revealed to a distance where only the electronic
structure at the Fermi level is seen. A stack of images is created as
opposed to just one slice because the real tip-sample distance in the
experiment is not known, and we want to avoid overfitting to an exact
scanning height by letting the model see images taken at a range of
different scanning heights. This is achieved by randomly selecting one
two-dimensional (2D) slice from the 3D stack of images during
training. Consequently, our model does not require a full stack of
images at prediction time, making structure discovery easily accessible
using only one image. The data set also includes three image
descriptors for each molecule�atomic disks, van der Waals spheres,
and height map22 (Figure 1D)�which we have chosen as visual and
2D representations of the molecules that we can calculate analytically
from the atomic coordinates. Image descriptors are a convenient tool
here, as they are not only visually intuitive for people but also suitable
for many machine learning model designs. In all results, we focus on
the atomic disk descriptor as it provides the most discrete predictions
for the atomic positions and encodes the chemical information in the
size of each disk, proportional to the covalent radius of the atom. The
relative height of each atom is represented as the brightness of the
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disk (background is zero), and atoms deeper than 1.2 Å relative to the
top atom are not considered.

Machine Learning. In this work, the structure discovery task is
formulated as an image-to-image problem, for which we have
developed and trained a machine learning model which translates
the STM image into a descriptor using an Attention U-Net-type
model which utilizes an encoder-decoder architecture and an
attention-gating mechanism.54 On a conceptual level, the encoder
compresses the information on the input image (STM image) into a
latent space vector, which in turn is translated into a spatially larger
representation (image descriptor) by the decoder. The encoder
consists of 4 convolutional blocks containing two 2D convolutional
layers with a LeakyReLU0.1

55 activation function in between, followed
by batch normalization56 and a second LeakyReLU activation. Each of
the convolutional blocks is preceded by a downscaling block, which
downsamples the image using strided convolutions to increase the
receptive field. The same activation and batch normalization policies
are used in the downscaling. The decoder section consists of four
blocks that include an upscaling block, an attention gate, and a
convolutional block identical to the encoder. Upsampling is achieved
using a transposed 2D convolutional layer, and in the block, the same
activation and batch normalization policies are used as in the encoder.
The attention gate generates highlighted regions in the input for the
model to focus on using a type of skip connection where an additional
query signal comes from the upscaled feature map. The attention map
is concatenated with the upsampled feature map and is used as input
for the convolutional block. The output layer of the model is a 1 × 1
convolutional layer followed by a ReLU activation (see full details in
Figure S1).

The ML model is implemented in PyTorch,57 and it is trained in a
supervised setting for which the images were divided into training
(180,000 images), validation (20,000), and testing (35,554) sets. The
model was trained for 50 epochs, and a batch size of 30 was used. The
parameters of the model were optimized using the Adam optimizer58

to minimize the mean squared error. During training, the simulated
STM images are normalized to 0 mean and unit variance, and we also
add white noise and cut-outs to the images, representing electronic
noise and tip artifacts to make the model not rely on pristine
simulated images but instead force it to make predictions on imperfect
images. After training, inference on the model can be done using true
experimental images to obtain a prediction of the structure with very
little computational cost.
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